1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
use crate::sketchbook::model::ModelState;
use biodivine_lib_param_bn::{BooleanNetwork, RegulatoryGraph};

/// Methods for converting between `ModelState` and `BooleanNetwork` (from the `lib-param-bn`).
impl ModelState {
    /// Internal function to convert the `ModelState` into a variant of `BooleanNetwork` with
    /// specified information to be included.
    ///
    /// By default, all variables and regulations are included. You can choose the following:
    /// - `regulation_types`: include types of regulations
    /// - `parameters`: include all parameters for uninterpreted functions
    /// - `update_fns`: include all update functions
    /// - `extra_vars`: additional extra variables (with no update fns, no regulations)
    ///
    /// It is up to you to make the selection reasonable (e.g., when including update functions
    /// that contain parameters, you must also include parameters, and so on...).
    fn to_bn_with_options(
        &self,
        regulation_types: bool,
        parameters: bool,
        update_fns: bool,
        extra_vars: Option<Vec<String>>,
    ) -> Result<BooleanNetwork, String> {
        let reg_graph = if regulation_types {
            self.to_reg_graph(extra_vars)
        } else {
            self.to_reg_graph_with_unspecified_regs(extra_vars)
        };
        let mut bn = BooleanNetwork::new(reg_graph);

        if parameters {
            for (fn_id, uninterpreted_fn) in self.uninterpreted_fns.iter() {
                // uninterpreted fns always have unique valid IDs, so we can unwrap
                bn.add_parameter(fn_id.as_str(), uninterpreted_fn.get_arity() as u32)
                    .unwrap();
            }
        }

        if update_fns {
            for (var_id, update_fn) in self.update_fns.iter() {
                if !update_fn.is_unspecified() {
                    bn.add_string_update_function(var_id.as_str(), update_fn.get_fn_expression())?;
                }
            }
        }
        Ok(bn)
    }

    /// Convert the `ModelState` into the corresponding "default" `BooleanNetwork` object.
    /// The resulting BN covers the variables and regulations, but it has empty update functions,
    /// and does not cover any parameters.
    pub fn to_empty_bn(&self) -> BooleanNetwork {
        // this is a safe combination that cannot result in errors
        self.to_bn_with_options(true, false, false, None).unwrap()
    }

    /// Convert the `ModelState` into the corresponding "default" `BooleanNetwork` object with added
    /// parameters.
    /// The resulting BN covers the variables, parameters, and regulations, but it has empty update functions.
    pub fn to_empty_bn_with_params(&self) -> BooleanNetwork {
        // this is a safe combination that cannot result in errors
        self.to_bn_with_options(true, true, false, None).unwrap()
    }

    /// Generate a `BooleanNetwork` with a only given number of "placeholder" (fake) variables.
    /// These variables will be named `var0`, `var1`, ...
    ///
    /// The resulting BN will normally contain all uninterpreted functions (parameters) of this model.
    /// There will be no regulations, and update functions will be empty.
    ///
    /// This is useful for parsing `FnUpdate` objects describing syntactic trees of uninterpreted functions.
    pub fn to_fake_bn_with_params(&self, num_variables: usize) -> BooleanNetwork {
        // construct a bn with fake variables
        let fake_vars = (0..num_variables).map(|i| format!("var{i}")).collect();
        let reg_graph = RegulatoryGraph::new(fake_vars);
        let mut bn = BooleanNetwork::new(reg_graph);

        // add all the parameters
        for (fn_id, uninterpreted_fn) in self.uninterpreted_fns.iter() {
            // uninterpreted fns always have unique valid IDs, so we can unwrap
            bn.add_parameter(fn_id.as_str(), uninterpreted_fn.get_arity() as u32)
                .unwrap();
        }
        bn
    }

    /// Convert the `ModelState` into the corresponding `BooleanNetwork` object (that will contain all of the
    /// variables, regulations, update functions, and uninterpreted functions.
    ///
    /// Note that currently the `BooleanNetwork` class does not support all features of the `ModelState` (such as
    /// various regulation types or details of uninterpreted functions) -- these will be lost during the conversion.
    pub fn to_bn(&self) -> BooleanNetwork {
        // this is a safe combination that cannot result in errors
        self.to_bn_with_options(true, true, true, None).unwrap()
    }

    /// Convert the `ModelState` into the corresponding `BooleanNetwork` object (that will contain all of the
    /// variables, (plain) regulations, update functions, and uninterpreted functions). However,
    /// the types of regulations (both monotonicity and essentiality) are ignored, and instead used as
    /// unspecified.
    ///
    /// This might be useful if we want to process regulation types later via static properties.
    ///
    /// You can add optional extra variables (`extra_vars`). These will have no update fns or
    /// regulations.
    pub fn to_bn_with_plain_regulations(&self, extra_vars: Option<Vec<String>>) -> BooleanNetwork {
        // this is a safe combination that cannot result in errors
        self.to_bn_with_options(false, true, true, extra_vars)
            .unwrap()
    }
}

impl ModelState {
    /// Convert the `ModelState` into the corresponding `BooleanNetwork` object (that will contain
    /// all of the variables, regulations, update functions, and uninterpreted functions).
    ///
    /// Annotations for both variables and functions are let empty.
    /// See [ModelState::from_reg_graph] for details on how regulations and variables are handled.
    ///
    /// A name of parameters used in BooleanNetwork (which should be unique) is used as both
    /// its ID and name in the resulting ModelState.
    pub fn from_bn(bn: &BooleanNetwork) -> Result<Self, String> {
        // this collects variables and regulations
        let mut model = ModelState::from_reg_graph(bn.as_graph())?;

        // add parameters
        for param_id in bn.parameters() {
            let param = bn.get_parameter(param_id);
            let name = param.get_name();
            model.add_empty_uninterpreted_fn_by_str(name, name, param.get_arity() as usize)?;
        }

        // and also add update functions
        for var in bn.variables() {
            let var_name = bn.get_variable_name(var);
            let update_fn_opt = bn.get_update_function(var);
            if let Some(update_fn) = update_fn_opt {
                let var_id = model.get_var_id(var_name)?;
                model.set_update_fn(&var_id, &update_fn.to_string(bn))?;
            }
        }
        Ok(model)
    }
}

#[cfg(test)]
mod tests {
    use crate::sketchbook::model::ModelState;

    /// Prepare a test model containing all the different components.
    pub(super) fn prepare_test_model_full() -> ModelState {
        let mut model = ModelState::new_from_vars(vec![("a", "a"), ("b", "b")]).unwrap();
        let var_a = model.get_var_id("a").unwrap();
        model
            .add_multiple_regulations(vec!["a -> b", "b -> a", "a -| a"])
            .unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("f", "f", 2)
            .unwrap();
        model.set_update_fn(&var_a, "b & !a").unwrap();
        model
    }

    #[test]
    fn test_to_empty_bn() {
        let model = prepare_test_model_full();
        let bn = model.to_empty_bn();
        let var_a = bn.as_graph().find_variable("a").unwrap();
        let var_b = bn.as_graph().find_variable("b").unwrap();
        assert_eq!(bn.num_vars(), 2);
        assert_eq!(bn.regulators(var_a), vec![var_a, var_b]);
        assert_eq!(bn.num_parameters(), 0);
    }

    #[test]
    fn test_to_empty_bn_with_params() {
        let model = prepare_test_model_full();
        let bn = model.to_empty_bn_with_params();
        assert_eq!(bn.num_parameters(), 1);
        assert!(bn.find_parameter("f").is_some());
    }

    #[test]
    fn test_to_bn_and_back() {
        let model = prepare_test_model_full();
        let bn = model.to_bn();
        let var_a = bn.as_graph().find_variable("a").unwrap();
        let var_b = bn.as_graph().find_variable("b").unwrap();
        let model_var_a = model.get_var_id("a").unwrap();
        let update_var_a = model.get_update_fn(&model_var_a).unwrap().to_fn_update(&bn);
        assert_eq!(bn.get_update_function(var_a), &update_var_a);
        assert_eq!(bn.get_update_function(var_b), &None);

        // the conversion back works only if IDs and names (for variables, functions) match (which
        // is out case)
        let model_converted = ModelState::from_bn(&bn).unwrap();
        assert_eq!(model, model_converted);
    }

    #[test]
    fn test_to_fake_bn() {
        let model = prepare_test_model_full();
        let bn = model.to_fake_bn_with_params(2);
        let var_0 = bn.as_graph().find_variable("var0").unwrap();
        let var_1 = bn.as_graph().find_variable("var1").unwrap();
        assert_eq!(bn.num_vars(), 2);
        assert_eq!(bn.as_graph().regulations().len(), 0);
        assert_eq!(bn.num_parameters(), 1);
        assert_eq!(bn.get_update_function(var_0), &None);
        assert_eq!(bn.get_update_function(var_1), &None);
    }
}